

Civil Engineering Department

Course Specification

Course Code: CVE 3101 Course Title: Structural Analysis (5)

1. Basic information						
Program Title	Civil Engineering Department					
Department offering the program	Civil Engineering Department					
Department offering the course	Civil Engineering Department					
Course Code	CVE 3101					
Year/level	third year / fourth level (1st Semester)					
Specialization	Major					
Tooching House	Lectures	Tutorial	Practical	Total		
Teaching Hours	4	2		6		

2. Co	urse Aims
No.	Aim
AM1	Teach the students how to analysis of indeterminate structures, and introduction into
	dynamic analysis (AM2).

3. Course Learning Outcomes (LOs)					
CLO1	Identify and formulate complex engineering problems by applying engineering fundamentals, basic science, and mathematics.				
CLO2	Solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.by applying engineering fundamentals, basic science, and mathematics.				

4. Course Contents					
Topics	Week No.				
Introduction into stiffness matrix analysis	1				
Analysis of indeterminate beams using stiffness matrix	2				
Determination of internal forces for indeterminate beams	3				

Analysis of indeterminate frames using stiffness matrix	4
Determination of internal forces for indeterminate frames	5
Analysis of indeterminate trusses using stiffness matrix	6
Determination of internal forces for indeterminate trusses	7
Introduction into dynamics analysis	8
Mid-term exam	9
Introduction, analysis, and equations of free undamped vibration on beams	10
Introduction, analysis, and equations of Free undamped vibration on frames	11
Introduction, analysis, and equations of Free damped vibration on beams	12
Introduction, analysis, and equations of Free damped vibration on frames, Forced undamped vibration[1]	13
Introduction, analysis, and equations of Free damped vibration on frames, Forced undamped vibration[2]	14
Final exam	15

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation
CLO1				$\sqrt{}$								
CLO2	√			√		$\sqrt{}$						

Civil Engineering Department

6. Teaching and Learning methods of Disabled Students					
No.	Teaching Method	Reason			
1	Additional Tutorials	-			
2	Online lectures and assignments	-			

7. Students' Assessment

7.1 Students' Assessment Method						
No.	Assessment Method	Los				
1	Attendance					
2	Sheets	CLO1, CLO2				
3	Quizzes	CLO1, CLO2				
4	Mid-term Exam	CLO1, CLO2				
5	Practical Exam					
6	Final Exam	CLO1, CLO2				

7.2 Assessment Schedule					
No.	Assessment Method	Weeks			
1	Attendance	Weekly			
2	Sheets	Bi-weekly			
3	Quizzes				
4	Mid-term Exam	9			
5	Practical Exam				
6	Final Exam	15			

7.3 Weighting of Assessments							
	Assessment Method	Weights%	Weights	Weights%	Weights		
	sheets			10%	10		
Teacher Opinion	Attendance	40%	40	-	-		
reacher Opinion	Quizzes	4070		10%	10		
	Mid-term exam			20%	20		
	Practical Attendance			-	-		
Practical / Oral	Lab. Reports			-	-		
Tractical/Oral	Lab. Activities / Projects			-	-		
	Final oral / practical exam	/ practical exam		-	-		
Final Exam		60%	60				

Civil Engineering Department

Total	100%	100	

8. List of References

- [1] McGuire, W., Gallagher, R. H., & Ziemian, R. D. (2000). Matrix structural analysis.
- [2] Chopra, A. K. (2007). Dynamics of structures. Pearson Education India.
- [3] Benhassine, A., Chouiter, M. I., Ali, M. K., Kacem-Chaouche, N., Merazig, H., Bencharif, M., & Belfaitah, A. (2022). New Cd (II) complex derived from (1-methylimidazol-2-yl) methanol: Synthesis, crystal structure, spectroscopic study, DFT and TD-DFT calculations, antimicrobial activity and free-radical scavenging capacity. Journal of Molecular Structure, 1257, 132583.
- [4] Spillers, W. R., & MacBain, K. M. (2009). Structural optimization. Springer Science & Business Media.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

10. Matrix of Course Content with Course LO's

No.	Topics	Aim	Los
1	Introduction into stiffness matrix analysis	AM1	CLO1, CLO2
2	Analysis of indeterminate beams using stiffness matrix	AM1	CLO1, CLO2
3	Determination of internal forces for indeterminate beams	AM1	CLO1, CLO2
4	Analysis of indeterminate frames using stiffness matrix	AM1	CLO1, CLO2
5	Determination of internal forces for indeterminate frames	AM1	CLO1, CLO2
6	Analysis of indeterminate trusses using stiffness matrix	AM1	CLO1, CLO2
7	Determination of internal forces for indeterminate trusses	AM1	CLO1, CLO2
8	Introduction into dynamics analysis	AM1	CLO1, CLO2

Civil Engineering Department

9	Introduction, analysis, and equations of free undamped vibration on beams	1 11/11	CLO1, CLO2
10	Introduction, analysis, and equations of Free undamped vibration on frames	AM1	CLO1, CLO2
11	Introduction, analysis, and equations of Free damped vibration on beams	AM1	CLO1, CLO2
12	Introduction, analysis, and equations of Free damped vibration on frames, Forced undamped vibration	AM1	CLO1, CLO2

11. Matrix of Program LOs with Course Los

	8		
	Program Los		Course Los
	Identify, formulate, and solve complex engineering problems	CLO1	Identify and formulate complex engineering problems by applying engineering fundamentals, basic science, and mathematics.
PLO1	by applying engineering fundamentals, basic science, and mathematics.	CLO2	Solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.by applying engineering fundamentals, basic science, and mathematics.

Title	Name	Signature
Course coordinator	DR. mamdouh tawakol	H. Tawakas
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	Dr. A. Hannak
Head of Department	Prof. Dr. Sherif Khafaga.	exact.
Date of Approval	4/ 10/ 2022	

Higher Institute of Engineering and Technology, Fifth Settlement

Civil Engineering Department

Course Specification

Course Code: CVE 3102 Course Title: Design of reinforced concrete (3)

1. Basic information					
Program Title	Civil Engineering Department				
Department offering the program	Civil Engineering Department				
Department offering the course	Civil Engineering Department				
Course Code	CVE 3102				
Year/level	Third year / fo	urth level	(1 st Seme	ster)	
Specialization	Major				
To although	Lectures	Tutorial	Practical	Total	
Teaching Hours	2	2		4	

2. Co	2. Course Aims					
No.	Aim					
1	Teach the students how to think about and design problems and requirements using scientific methods (AM2)					
2	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.(AM4)					

3. Learn	3. Learning Outcomes (LOs)						
CLO6 Apply engineering design processes to produce cost-effective solutions.							
CLO8	Achieve the principles of design within the principles and contexts of sustainable design and development.						
CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.						
CLOTO	audiences using contemporary tools.						
CLO24	Achieve an optimum design of Reinforced Concrete elements						

Higher Institute of Engineering and Technology, Fifth Settlement

4. Course Contents	
Topics	Week
Introduction	1
Design of solid slabs (part1)	2
Design of solid slabs (part2)	3
Design of hollow block slabs	4
Design of hollow block slabs	5
Design of paneled beams	6
Design of sections subjected to torsion	7
Design of sections subjected to torsion and shear	8
Mid term exam	9
Design of slab-type stairs	10
Design of beam-type stairs	11
Design of cantilever-type stairs	12
Drawing reinforcement of all types of slabs	13
Final revision	14
Final exam	15

5. Teaching and Learning methods					
Course learning Outcomes (LOs)	Teaching and Learning Methods				

Civil Engineering Department

	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation
CLO6	$\sqrt{}$			V			V					
CLO8				V			√					
CLO16				V								
CLO24	$\sqrt{}$			V			1					

6. Teaching and Learning methods of Disabled Students					
No. Teaching Method Reason					
1	Additional Tutorials				
2	Online lectures and assignments				

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method					
No.	Assessment Method	LOs				
1	Attendance					
2	Sheets	-				
3	Quizzes	CLO6, CLO8, CLO16, CLO24				
4	Mid-term Exam	CLO6, CLO8, CLO16,				
5	Practical Exam					
6	Final Exam	CLO6, CLO8, CLO16, CLO24				

Civil Engineering Department

7.2 Assessment Schedule					
No.	Assessment Method	Weeks			
1	Attendance	weekly			
2	Reports / Sheets	weekly			
3	Quiz 1 / Quiz 2	-			
4	Mid-term Exam	9			
5	Practical Exam	-			
6	Final Exam	15			

7.3 Weighting of Assessments							
	Assessment Method	Weights%	Weights	Weights%	Weights		
	sheets			10%	10		
Teacher Opinion	Attendance	40%	40	10%	10		
reaction Opinion	Quizzes	4070		-	-		
	Mid-term exam			20%	20		
	Practical Attendance						
Practical / Oral	Lab. Reports						
Tructicui / Orui	Lab. Activities / Projects						
	practical exam						
Final Exam		60%	60				
Total		100%	100				

8. List of References

Higher Institute of Engineering and Technology, Fifth Settlement

Civil Engineering Department

- [1] Reynolds, C. E., Steedman, J. C., & Threlfall, A. J. (2007). Reinforced concrete designer's handbook. CRC Press.
- [2] Darwin, D., Dolan, C. W., & Nilson, A. H. (2016). Design of concrete structures (Vol. 2). New York, NY, USA:: McGraw-Hill Education.
- [3] Wang, C. K., & Salmon, C. G. (1979). Reinforced concrete design
- [4] Shetty, M. S., & Jain, A. K. (2019). Concrete Technology (Theory and Practice), 8e. S. Chand Publishing.
- [5] Raju, N. K. (2005). Structural Design and Drawing: Reinforced Concrete and Steel. Universities Press.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

10.	10. Matrix of Course Content with Course LO's								
No.	Topics	Aim	LOs						
1	Introduction	AM2,AM4	CLO16,CLO6						
2	Design of solid slabs (part1)	AM2,AM4	CLO16,CLO6						
3	Design of solid slabs (part2)	AM2,AM4	CLO8,CLO6,CLO16						
4	Design of hollow block slabs	AM2,AM4	CLO8,CLO6,CLO16						
5	Design of hollow block slabs	AM2,AM4	CLO16,CLO6						
6	Design of paneled beams	AM2,AM4	CLO16,CLO6						
7	Design of sections subjected to torsion	AM2	CLO8 ,CLO24						
8	Design of sections subjected to torsion and shear	AM2,AM4	CLO6,CLO8,CLO24						
9	Mid term exam	AM2	CLO6,CLO8,CLO24						

Higher Institute of Engineering and Technology, Fifth Settlement

10	Design of slab-type stairs	AM2,AM4	CLO16,CLO6
11	Design of beam-type stairs	AM2,AM4	CLO16,CLO6
12	Design of cantilever-type stairs	AM2,AM4	CLO8,CLO6,CLO16
13	Drawing reinforcement of all types of stairs	AM2,AM4	CLO8,CLO6,CLO16
14	Final revision	AM2,AM4	CLO6,CLO8,CLO16,CLO24
15	Final exam	AM2,AM4	CLO6,CLO8,CLO24,CLO16

11. 3	11. Matrix of Program LOs with Course Los								
	Program LOs	Course LOs							
PLO3	1 Apply engineering design processes to produce costeffective solutions., Meet specified needs with consideration for global, cultural, social, economic, environmental, and ethical aspects and achieve the principles of design within the principles and contexts of sustainable design and development.	CLO6, CLO8	Apply design engineering processes to produce cost-effective solutions Achieve the principles of design within the principles and contexts of sustainable design and development						
PLO8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.						
PLO12	Achieve an optimum design of Reinforced Concrete and Steel Structures. Foundations and Earth Retaining Structures	CLO24	Achieve an optimum design of Reinforced Concrete elements						

Title	Name	Signature
Course coordinator	DR. Khaled samy abdallah	Dr. Khaled Samy

Higher Institute of Engineering and Technology, Fifth Settlement

Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	Dr. A. Hannel
Head of Department	Prof. Dr. Sherif Khafaga.	exact.
Date of Approval	4/ 10/ 2022	

Higher Institute of Engineering and Technology-fifth settlement

Civil Engineering Department

Course Specification

Course Code: CVE 3103Course Title: Steel Structures Design (1)

1. Basic information							
Program Title	Civil Engineering Department						
Department offering the program	Civil Engineering Department						
Department offering the course	Civil Engineering Department						
Course Code	CVE 3103						
Year/level	third year / first Semester (1stSemester)						
Specialization	Major						
Taashina Hanna	Lectures	Tutorial	Practical	Total			
Teaching Hours	2	2	0	4			

2. Co	2. Course Aims						
No.	Aim						
AM1	Provide a professional engineer capable of working efficiently and effectively in steel						
	structures area design.						

3. Cour	3. CourseLearning Outcomes (CLOs)								
CLO1	Identify steel types and its properties.								
CLO2	Solve complex steel design problems by applying structure analyzing fundamentalsand mathematics.								

Higher Institute of Engineering and Technology-fifth settlement

4. Course Contents	
Topics	Week
Introduction, Philosophies of steel structure.	1
Systems and Uses, Materials, Design in steel structure.	2
Structural systems and general layout.[1]	3
Structural systems and general layout.[2]	4
Loads, Classification of Sections, Slenderness Ratios and Buckling Lengths and Analysis and design concepts, ASD, LRFD design concepts.[1]	5
Loads, Classification of Sections, Slenderness Ratios and Buckling Lengths and Analysis and design concepts, ASD, LRFD design concepts.[2]	6
Design of tension members.	7
midterm	8
Design of axially loaded compression members.	9
Types of connections in steel structures (simple connection, shear connection, moment connections)	10
Design of non-pretension, pretention bolted connections (Shear, Tension & Shear + Tension) and details of bolted connections.[1]	11
Design of non-pretension, pretention bolted connections (Shear, Tension & Shear + Tension) and details of bolted connections.[2]	12
Design of welded connections and details of welded connections.	13
Revision	14
Final exam	15

Civil Engineering Department

5. Teaching and Learning methods												
			Те	achin	g and	l Lear	ning l	Metho	ods			
Course learning Outcomes (CLOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation
CLO1		V		V		V	V					
CLO2			V		$\sqrt{}$	V	V					$\sqrt{}$

6. Teaching and Learning methods of Disabled Students					
No.	Teaching Method	Reason			
1	Additional Tutorials				
2	Online lectures and assignments				

7. Students' Assessment

7.1 Stud	7.1 Students' Assessment Method									
No.	Assessment Method	CLOs								
1	Attendance									
2	Sheets	CLO1, CLO2,								
3	Quizzes	CLO1								
4	Mid-term Exam	CLO1, CLO2								
5	Final Exam	CLO1, CLO2								

Civil Engineering Department

7.2Assessment Schedule								
No.	Assessment Method	Weeks						
1	Attendance	Weekly						
2	Sheets	Bi-weekly						
3	Quizzes							
4	Mid-term Exam	8						
5	Final Exam	15						

7.3 Weighting of Assess	ments				
	Assessment Method	Weights%	Weights	Weights%	Weights
	sheets			5%	5
Sheets Attendance Quizzes Mid-term exam Practical Attendance Lab. Reports Projects practical exam			5		
	Quizzes	4070	10	10%	10
	Mid-term exam			20%	20
	Practical Attendance				
Practical	Lab. Reports				
	Projects				
	practical exam				
Final Exam		60%	60		
Total		100%	100		

8. List of References

- [1] Steel Structures design and Behavior G. Salman& E. Johnson, Fifth Edition 2009.
- [2] Structural Steel Design, Jack C. McCormack, fourth Edition, 2008.
- [3] Egyptian Code of Practice ASD, LRFD, 2010.
- [4] (AISC 360-16) ,2019

Technology-fifth settlement

Civil Engineering Department

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

10. Matrix of Course Content with CourseCLO's

No.	Topics	Aim	CLOs
1	Introduction, Philosophies of steel structure.	1	CLO1,
2	Systems and Uses, Materials, Design in steel structure.	1	CLO1, CLO2
3	Structural systems and general layout.[1]	1	CLO1,
4	Structural systems and general layout.[2]	1	CLO1, CLO2,
5	Loads, Classification of Sections, Slenderness Ratios and Buckling Lengths and Analysis and design concepts, ASD, LRFD design concepts.[1]	1	CLO1, CLO2,
6	Loads, Classification of Sections, Slenderness Ratios and Buckling Lengths and Analysis and design concepts, ASD, LRFD design concepts.[2]	1	CLO1, CLO2,
7	Design of tension members.	1	CLO1, CLO2,
8	Design of axially loaded compression members.	1	CLO1, CLO2
9	Types of connections in steel structures (simple connection, shear connection, moment connections)	1	CLO1, CLO2,
10	Design of non-pretension, pretention bolted connections (Shear, Tension & Shear + Tension) and details of bolted connections.[1]	1	CLO1,
11	Design of non-pretension, pretention bolted connections (Shear, Tension & Shear + Tension) and details of bolted connections.[2]	1	CLO1, CLO2,
12	Design of welded connections and details of welded connections.[1]	1	CLO1, CLO2

11. Matrix of Program LOs with Course Los

	Program LOs		Course LOs
	Identify, formulate, and solve complex engineering	CLO1	Identify steel types and its properties.
PLO1	problems by applying engineering fundamentals, basic science, and mathematics.	CLO2	Solve complex steel design problems by applying structure analyzing fundamentalsand mathematics.

Title	Name	Signature
Course coordinator	Dr. Medhat Momtaz	Q2/3
Program Coordinator:	Dr. Ahmed Hamdy	Dr. A. Hamde
Head of Department	Prof. Dr. Sherif khafaga.	lapar.
Date of Approval	4/ 10/ 2022	

Civil Engineering Department

Course Specification

Course Code: CVE 3104 Course Title: Geotechnical Engineering

1. Basic information									
Program Title	Civil Engineeri	ng Department							
Department offering the program	Civil Engineeri	ng Department							
Department offering the course	Civil Engineering Department								
Course Code	CVE 3104								
Year/level	third year / Firs	t Semester	(1 st Seme	ster)					
Specialization	Major								
Tagahina Hawa	Lectures	Tutorial	Practical	Total					
Teaching Hours	4	2		6					

2. Co	urse Aims
No.	Aim
1	Give students with technical skills to estimate physical and mechanical properties of soil (AM3).
2	Make it possible for graduates to pursue continuing education in geotechnical engineering and self-learning. (AM5)

3. Cour	rse Learning Outcomes (LOs)
CLO3	Conduct appropriate soil experimentation to draw conclusions.
CLO22	Use physical measurements by applying a full range of civil engineering concepts and techniques of Soil Mechanics.
CLO23	Use testing specified with soil by applying a full range of civil engineering concepts and techniques.
CLO24	Achieve an optimum design of Foundations and Earth Retaining Structures.

No. of week	Topics
1	Introduction to soil compaction
2	Soil compaction (part 1)
3	Soil compaction (part 2)
4	Introduction to slope stability
5	slope stability (part 1)
6	slope stability (part 2)
7	Lateral earth pressure (part 1)
8	Lateral earth pressure (part 2)
9	Midterm exam
10	Retaining walls constructions (part 1)
11	Retaining walls constructions (part 2)
12	Sheet pile wall (part 1)
13	Sheet pile wall (part 2)
14	Revision
15	Final Exam

3. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation
CLO3					$\sqrt{}$							
CLO22	V	V	V	V	$\sqrt{}$							

Civil Engineering Department

CLO23	1	1	1	$\sqrt{}$	$\sqrt{}$	V				
CLO24		 				V		\checkmark	\checkmark	

4. Teaching and Learning methods of Disabled Students			
No.	Teaching Method Reason		
1	Additional Tutorials		
2	Online lectures and assignments		

5. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method			
No.	Assessment Method	LOs		
1	Attendance			
2	Reports / Sheets	CLO3, CLO22, CLO23,		
		CLO24		
3	Quiz 1 / Quiz 2			
4	Mid-term Exam	CLO22, CLO23, CLO24		
5	Oral/ Practical Exam			
6	Final Exam	CLO3, CLO22, CLO23,		
		CLO24		

7.2 Assessment Schedule			
No.	Assessment Method	Weeks	
1	Attendance	Weekly	
2	Reports / Sheets	Bi-weekly	
3	Quiz 1 / Quiz 2	-	
4	Mid-term Exam	9	
5	Oral/ Practical Exam	-	
6	Final Exam	15	

Civil Engineering Department

	Assessment Method	Weights%	Weights	Weights%	Weights
	Reports / sheets / Activities			20%	20
Tanahar Oninian	Attendance	40% 40			-
Teacher Opinion	Quiz 1 / Quiz 2				
	Mid-term exam			20%	20
	Practical Attendance				
Practical / Oral	Lab. Reports				
Fractical / Orai	Lab. Activities / Projects				
	Final oral / practical exam				
Final Exam		60%	60		
Total		100%	100		

6. List of References

- [1] Donald P., Coduto, "Geotechnical Engineering: Principles and Practices", Prentice Hall 1999 (ISBN: 0135763800).
- [2] David F., McCarthy, "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Prentice Hall, ISBN: 0131145606(2007).
- [3] W.L.Schroeder, Stephen Dickenson and C. Warrington, "Soils in Construction, 5/E", Prentice Hall, ISBN: 0130489174(2004).
- [4] Suleiman M.T. (2009), lecture handouts for the CE 361: Geotechnical Engineering course, Lafayette collage, Easton, Pennsylvania.

7. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

8. N	8. Matrix of Course Content with Course LO's				
No.	Topics	Aim	LOs		
1	Introduction to soil compaction	Aim3, Aim5	CLO22, CLO24		
2	Soil compaction (part 1)	Aim3, Aim5	CLO22, CLO24		
3	Soil compaction (part 2)	Aim3, Aim5	CLO22, CLO24		
4	Introduction to slope stability	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
5	slope stability (part 1)	Aim3, Aim5	CLO22, CLO24		
6	slope stability (part 2)	Aim3, Aim5	CLO22, CLO24		
7	Lateral earth pressure (part 1)	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
8	Lateral earth pressure (part 2)	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
10	Retaining walls constructions (part 1)	Aim3, Aim5	CLO22, CLO24		
11	Retaining walls constructions (part 2)	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
12	Sheet pile wall (part 1)	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
13	Sheet pile wall (part 2)	Aim3, Aim5	CLO3, CLO22, CLO23, CLO24		
14	Practical Exam				

9. N	9. Matrix of Program LOs with Course Los				
	Program LOs		Course LOs		
PLO1	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	CLO3	Conduct appropriate soil experimentation to draw conclusions.		
PLO11	Select appropriate and sustainable technologies for construction of buildings.	CLO22	Use physical measurements by applying a full range of civil engineering concepts and techniques of Soil Mechanics.		
	Infrastructures and water	CLO23	Use testing specified with soil by applying		

	structures; using either numerical techniques or physical measurements and / or testing by applying a full range of civil engineering concepts and techniques of: Structural Analysis and Mechanics, Properties and Strength of Materials, Surveying, Soil Mechanics, Hydrology and Fluid Mechanics.		a full range of civil engineering concepts and techniques.
PLO12	Achieve an optimum design of Reinforced Concrete and Steel Structures. Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	CLO24	Achieve an optimum design of Foundations and Earth Retaining Structures.

Title	Name	Signature
Course coordinator Dr. Nesrin Ali Morsey		
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	Dr. A. Hound
Head of Department	Prof. Dr. Mohmed Elsayed Abou-Hashem.	
Date of Approval	4/ 10/ 2022	

Higher Institute of Engineering and Technology-fivth setllement

Civil Engineering Department

Course Specification

Course Code: CVE 3105 Course Title: Engineering Survey

1. Basic information				
Program Title	Civil Engineeri	ing Department	t	
Department offering the program	Civil Engineering Department			
Department offering the course	Civil Engineering Department			
Course Code	CVE 3105			
Year/level	third year / four	rth level	(1st Semes	ter)
Specialization	Major			
Tooching House	Lectures	Tutorial	Practical	Total
Teaching Hours	3	2	-	5

2. Course Aims				
No.	Aim			
AM4	Strength the links between the sectors participating in the process of establishing national civil projects.			
AM7	Work with contemporary field instrumentation, design and perform experiments, and			
	analyze and interpret the results.			

3. Cour	3. Course Learning Outcomes (CLOs)		
CLO2	Solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.by applying engineering fundamentals.		
CLO15	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.		
CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.		
CLO22	Use either numerical techniques or physical measurements by applying a full range		
	of civil engineering concepts and techniques of: Surveying.		

Technology-fivth setllement

4. Course Contents			
Topics	Week		
Role of surveying in engineering projects	1		
Total station instrument and its applications	2		
Methods of setting out of sewer and infrastructure networks	3		
Planning of Horizontal Curve	4		
Planning of Vertical Curve	5		
Deformation monitoring techniques	6		
Surveying reports for different Engineering projects	7		
Introduction to geometric geodesy	8		
Medterm	9		
Map projection	10		
Coordinate transformation	11		
Introduction to GNSS	12		
Introduction to GIS	13		
Revision	14		
Final Exam	15		

5. Teaching and Learning methods												
			Te	achin	g and	l Lear	ning 1	Metho	ods			
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO2				V					
CLO15	1	V		1					
CLO16									
CLO22	1	V	√	V		V	V		

6. Teaching and Learning methods of Disabled Students					
No.	Teaching Method Reason				
1	Additional Tutorials				
2	Online lectures and assignments				

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method					
No.	Assessment Method	LOs				
1	Attendance					
2	Reports / Sheets	CLO2, CLO15, CLO16, CLO22				
3	Quizzes	CLO2, CLO15, CLO22				
4	Mid-term Exam	CLO2, CLO22				
5	Practical Exam					
6	Final Exam	CLO2, CLO15, CLO16				

7.2 Ass	7.2 Assessment Schedule					
No.	Assessment Method	Weeks				
1	Attendance	Weekly				
2	Reports	Bi-weekly				
3	Sheets	Bi-weekly				
4	Quizs	4 & 10				
5	Mid-term Exam	9				
6	Practical Exam	-				
7	Final Exam	15				

Civil Engineering Department

Assessment Method Weights% Weights Weights Weights					
	Assessment Method	weights%	weights	weights%	weignts
	Reports / sheets / Activities			10%	10
Teacher Opinion	Attendance	40%	40		-
	Quizzes	1 70/0		10%	10
	Mid-term exam	1		20%	20
	Practical Attendance		-		
Practical	Lab. Reports	_			
Tactical	Lab. Activities / Projects				
	practical exam			-	-
Final Exam		60%	60		
Total		100%	100		

8. List of References

- [1] Schofield, Wilfred, and Mark Breach. Engineering surveying. CRC Press, 2007.
- [2] Breach, Mark, and W. Schofield. Engineering surveying. Elsevier Ltd. All rights reserved, 2007.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

10.	Matrix of Course Content with Course	LO's	
No.	Topics	Aim	LOs
1	Role of surveying in engineering projects	AM4,AM7	CLO2, CLO15
2	Total station instrument and its applications	AM4	CLO2, CLO22
3	Methods of setting out of sewer and infrastructure networks	AM4,AM7	CLO2, CLO15, CLO16, CLO22
4	Planning of Horizontal Curve	AM7	CLO15, CLO22
5	Planning of Vertical Curve	AM7	CLO2, CLO15, CLO16, CLO22
6	Deformation monitoring techniques	AM4,AM7	CLO2, CLO15, CLO16, CLO22
7	Surveying reports for different Engineering projects	AM4,AM7	CLO16
8	Introduction to geometric geodesy	AM4,AM7	CLO16
9	Map projection	AM4	CLO2, CLO16, CLO22
10	Coordinate transformation	AM4	CLO2, CLO15
11	Introduction to GNSS	AM4	CLO16, CLO22
12	Introduction to GIS	AM4	CLO16, CLO22

11. N	Matrix of Program LOs w	ith Cou	rse Los
Program LOs			Course LOs
PLO1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	CLO2	Solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.by applying engineering fundamentals, basic science, and mathematics.
PLO 7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	CLO15	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.
PLO 8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.

Higher Institute of Engineering and Technology-fivth setllement

PLO 11	Select appropriate and sustainable technologies for construction of buildings. Infrastructures and water structures; using either numerical techniques or physical measurements and / or testing by applying a full range of civil engineering concepts and techniques of: Surveying.	CLO22	Use either numerical techniques or physical measurements by applying a full range of civil engineering concepts and techniques of: Surveying.
--------	---	-------	---

Title	Name	Signature
Course coordinator	Asso. Prof. Dr. Ahmad Hamdy Ibrahim	De.A. Honde
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy Ibrahim	De A. Hond
Head of Department	Prof. Dr. Sherif Khafaga.	2.9021.
Date of Approval	4/10/2022	

Higher Institute of and Technology, Fifth Settlement

Civil Engineering Department

Course Specification

Course Code: CVE 3106 Course Title: Highway engineering and Airports

1. Basic information				
Program Title	Civil Engineering Department			
Department offering the program	Civil Engineering Department			
Department offering the course	Civil Engineering Department			
Course Code	CVE 3106			
Year/level	Third year / 4 th level (1 st Semester)			
Specialization	Major			
Tooching Hours	Lectures	Tutorial	Practical	Total
Teaching Hours	4	2		6

2. Course Aims					
No.	Aim				
AM1	Provide an engineer professional that is proficient in highway engineering.				
AM2	Teach the students to practice the principles of geometric and structural design.				
AM5	Make it possible for graduates to pursue continuing education in highway				
	engineering and self-learning.				

3. Cour	3. Course Learning Outcomes (CLOs)						
CLO6	Apply engineering design processes for highway design to produce cost-effective solutions.						
CLO7	Meet specified needs for highway design with consideration for social, economic, and environmental aspects.						
CLO12	Practice research techniques and methods of highway engineering problems investigation.						
CLO24	Achieve an optimum geometric and structural design of highway.						

4. Course Content	s				
Week No.	Topics				
1	Introduction: Highway System Development, Highway Functional Classifications, Highway Organizations and Associations.				
2	Highway Travel Characteristics.				
3	Highway Driver and Vehicle Characteristics.				
4	Highway Surveys and Plans: Highway routs Location, Highway Plans.				
5	Highway Geometric Design: Sight Distances.				
6	Highway Geometric Design: Vertical Alignments.				
7	Highway Geometric Design: Horizontal Alignments.				
8	Cross Section Elements				
9	MidTerm Exam				
10	Interchanges and Intersection.				
11	Soil classification				
12	Bituminous Materials: Aggregates and Asphalt.				
13	Mix Design: Marshall Method.				
14	Pavement Structural Design: Principles, Methods.				
15	Final Exam.				

5. Teaching and Learning methods						
Course learning Outcomes (LOs)	Teaching and Learning Methods					

Higher Institute of and Technology, Fifth Settlement

Civil Engineering Department

	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation
CLO6		1	1	1	-	1	1	-	-			ı
CLO7	1	V	-	1	-	-	-	-	-			-
CLO12	-	-	-	-	-	-	$\sqrt{}$	-	-			-
CLO24	-	-	-	1	-	V	$\sqrt{}$	$\sqrt{}$	-			-

6. Teaching and Learning methods of Disabled Students						
No.	o. Teaching Method Reason					
1	Additional Tutorials					
2	Online lectures and assignments					

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method					
No.	Assessment Method	LOs				
1	Attendance					
2	Reports	CLO6, CLO7, CLO12, CLO24				
3	Sheets	CLO6, CLO7, CLO12, CLO24				
4	Quiz 1 / Quiz 2					
5	Mid-term Exam	CLO6, CLO7, CLO24				
6	Oral/ Practical Exam					
7	Final Exam	CLO6, CLO7, CLO24				

7.2 Asse	ssment Schedule	
No.	Assessment Method	Weeks

Higher Institute of and Technology, Fifth Settlement

Civil Engineering Department

1	Attendance	Weekly
2	Reports / Sheets	Bi-weekly
3	Quiz 1 / Quiz 2	-
4	Mid-term Exam	9
5	Oral/ Practical Exam	-
6	Final Exam	15

7.3 Weighting of Assessments						
	Assessment Method	Weights%	Weights	Weights%	Weights	
	Reports			5%	5	
	Sheets			15%	15	
Teacher Opinion	Attendance	40%	40	-	-	
	Quiz 1 / Quiz 2			-	-	
	Mid-term exam			20%	20	
	Practical Attendance			-	-	
Practical / Oral	Lab. Reports			-	-	
Tractical / Oral	Lab. Activities / Projects			-	-	
	Final oral / practical exam			-	-	
Final Exam	Written exam	60%	60	60%	60	
Total		100%	100	100	100	

8. List of References

- [1] Egyptian code of practice for airport and highway construction and Bridges, Cairo, 2020.
- [2] Mannering, F.L. and Kilareski, W.P., "Principles of Highway Engineering and Traffic Analysis", John Wiley & Sons, 7th edition, New York, 2020.
- [3] AASHTO-GreenBook-7th-edition (2018).
- [4] Garber N. J. and Hoel, L. A., "Traffic and Highway Engineering", 4th Edition, 2009.
- [5] "The handbook of highway engineering" T. F. Fwa, 2006.

9. Facilities required for teaching and learning				
Lecture/Classroom				
White board				
Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)				
Moodle and Microsoft teams				
Data show				
Laboratory Usage				

10.	10. Matrix of Course Content with Course LO's							
Week No.	Topics	Aim	LOs					
1	Introduction: Highway System Development, Highway Functional Classifications, Highway Organizations and Associations.	1	CLO6, CLO7, CLO12					
2	Highway Travel Characteristics.	1	CLO6, CLO7					
3	Highway Driver and Vehicle Characteristics.	1	CLO6, CLO7					
4	Highway Surveys and Plans: Highway routs Location, Highway Plans.	1,5	CLO6, CLO7, CLO12					
5	Highway Geometric Design: Sight Distances.	1,2,5	CLO6, CLO24					
6	Highway Geometric Design: Vertical Alignments.	1,2,5	CLO6, CLO7, CLO24					
7	Highway Geometric Design: Horizontal Alignments.	1,2,5	CLO6, CLO7, CLO24					
8	Cross Section Elements	1,5	CLO6, CLO12, CLO24					
10	Interchanges and Intersection.	1,2,5	CLO6, CLO7, CLO24					
11	Soil classification	1,5	CLO6, CLO24					
12	Bituminous Materials: Aggregates and Asphalt.	1,5	CLO6, CLO24					
13	Mix Design: Marshall Method.	1,2,5	CLO6, CLO24					
14	Pavement Structural Design: Principles, Methods.	1,2,5	CLO6, CLO24					

11.	11. Matrix of Program LOs with Course Los							
Program LOs					Course LOs			
PLO3	Apply	engineering	design	CLO6	Apply engineering design processes for			

Higher Institute of and Technology, Fifth Settlement

	processes to produce cost- effective solutions that meet		highway design to produce cost-effective solutions.
	specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	CLO7	Meet specified needs for highway design with consideration for social, economic, and environmental aspects.
PLO5	Practice research techniques and methods of investigation as an inherent part of learning	CLO12	Practice research techniques and methods of highway engineering problems investigation.
PLO12	Achieve an optimum design of Reinforced Concrete and Steel Structures. Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	CLO24	Achieve an optimum geometric and structural design of highway.

Title	Name	Signature
Course coordinator	Dr. Mohamed Zakria	#
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	- Dr. A. Henrole-
Head of Department	Prof. Dr. Sherif Khafaga	Depart.
Date of Approval	4/10/2022	

Ministry of Higher Education

Higher Institute of Engineering and Technology, Fifth Settlement

Civil Engineering Department

Course Specification

Course Code: CVE 3201 Course Title: Design of reinforced concrete (4)

1. Basic information					
Program Title	Civil Engineering Department				
Department offering the program	Civil Engineering Department				
Department offering the course	Civil Engineering Department				
Course Code	CVE 3201				
Year/level	Third year / se	cond Semester	(2 nd	Semester)	
Specialization	Major				
To alter H	Lectures	Tutorial	Practical	Total	
Teaching Hours	2	2		4	

2. Co	2. Course Aims					
No.	Aim					
2	Teach the students how to think about and design problems and requirements using scientific methods (AM2)					
3)Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.(AM4)					

3. Lear	3. Learning Outcomes (LOs)						
CLO6	Apply engineering design processes to produce cost-effective solutions.						
CLO8	Achieve the principles of design within the principles and contexts of sustainable design and development.						
CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.						
CLO24	Achieve an optimum design of Reinforced Concrete elements						

4. Course Contents				
Topics	Week			
Introduction	1			
Design of girders	2			
Design of 2-hinged frames	3			
Design of 3-hinged frames	4			
Design of 2-fixed frames	5			
Design of arch girder	6			
Design of triangle polygon	7			
Design of trapezoidal polygon	8			
Mid term exam	9			
Design of arch slab	10			
Design of cantilever frame	11			
Design of arch slab supported on cantilever frame	12			
Drawing details of reinforcement	13			
Final revision	14			
Final exam	15			

5. Teaching and Learning methods												
		Teaching and Learning Methods										
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Ministry of Higher Education

Higher Institute of Engineering and Technology, Fifth Settlement

Civil Engineering Department

CLO6			$\sqrt{}$		$\sqrt{}$			
CLO8					V			
CLO16	1		√				 	
CLO24	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$			

6. Teaching and Learning methods of Disabled Students					
No.	Teaching Method	Reason			
1	Additional Tutorials				
2	Online lectures and assignments				

7. Students' Assessment

7.1 Students' Assessment Method				
No.	Assessment Method	LOs		
1	Attendance			
2	Sheets	CLO6, CLO8, CLO16, CLO24		
3	Quizzes			
4	Mid-term Exam	CLO6, CLO8, CLO16,		
5	Practical Exam			
6	Final Exam	CLO6, CLO8, CLO16, CLO24		

7.2 Assessment Schedule				
No.	Assessment Method Weeks			
1	Attendance	weekly		
2	Sheets	weekly		
3	Quizzes	-		
4	Mid-term Exam	9		
5	Oral/ Practical Exam	-		
6	Final Exam	15		

Ministry of Higher Education

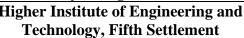
Higher Institute of Engineering and Technology, Fifth Settlement

Civil Engineering Department

7.3 Weighting of Assessments						
	Assessment Method	Weights%	Weights	Weights%	Weights	
	sheets			10%	10	
Touchar Oninian	Attendance	40%	40	10%	10	
Teacher Opinion	Quizes	4070	40	-	-	
	Mid-term exam			20%	20	
	Practical Attendance					
Practical / Oral	Lab. Reports					
Tractical / Oral	Lab. Activities / Projects					
	Final oral / practical exam					
Final Exam		60%	60			
Total		100%	100			

8. List of References

- [1] Reynolds, C. E., Steedman, J. C., & Threlfall, A. J. (2007). Reinforced concrete designer's handbook. CRC Press.
- [2] Darwin, D., Dolan, C. W., & Nilson, A. H. (2016). Design of concrete structures (Vol. 2). New York, NY, USA:: McGraw-Hill Education.
- [3] Wang, C. K., & Salmon, C. G. (1979). Reinforced concrete design
- [4] Shetty, M. S., & Jain, A. K. (2019). Concrete Technology (Theory and Practice), 8e. S. Chand Publishing.
- [5] Raju, N. K. (2005). Structural Design and Drawing: Reinforced Concrete and Steel. Universities Press.


9. Facilities required for teaching and learning

Lecture/Classroom

White board

Ministry of Higher Education Higher Institute of Engineering and

Civil Engineering Department

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.) Moodle and Microsoft teams Data show Laboratory Usage

10.	10. Matrix of Course Content with Course LO's							
No.	Topics	Aim	LOs					
1	Introduction	AM2,AM4	CLO16, CLO6					
2	Design of girders	AM2,AM4	CLO16, CLO6					
3	Design of 2-hinged frames	AM2,AM4	CLO16, CLO6, CLO8					
4	Design of 3-hinged frames	AM2,AM4	CLO16, CLO6					
5	Design of 2-fixed frames	AM2,AM4	CLO16, CLO6					
6	Design of arch girder	AM2,AM4	CLO16, CLO6					
7	Design of triangle polygon	AM2,AM4	CLO16, CLO24					
8	Design of trapezoidal polygon	AM2,AM4	CLO16, CLO6,CLO24					
9	Mid term exam	AM2,AM4	CLO16, CLO6, CLO24					
10	Design of arch slab	AM2,AM4	CLO16, CLO6, CLO8					
11	Design of cantilever frame	AM2,AM4	CLO16, CLO6					
12	Design of arch slab supported on cantilever frame	AM2,AM4	CLO16, CLO6					
13	Drawing details of reinforcement	AM2,AM4	CLO16, CLO6					
14	Final revision	AM2,AM4	CLO6,CLO8,CLO16,CLO24					
15	Final exam	AM2,AM4	CLO16, CLO24					

11.	Matrix of Program LOs with Course Los						
	Program LOs	Course LOs					
PLO3	1 Apply engineering design processes to produce cost-effective solutions., Meet specified needs with consideration for global, cultural, social, economic, environmental, and ethical aspects and achieve the	CLO6,CLO8	Apply design engineering processes to produce cost-effective solutions. Achieve the principles of design within the principles and contexts of sustainable design and development.				

Ministry of Higher Education

Higher Institute of Engineering and Technology, Fifth Settlement

	principles of design within the principles and contexts of sustainable design and development.		
PLO8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	CLO16	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.
PLO12	Achieve an optimum design of Reinforced Concrete and Steel Structures. Foundations and Earth Retaining Structures	CLO24	Achieve an optimum design of Reinforced Concrete elements

Title	Name	Signature
Course coordinator	DR. Khaled samy abdallah	Dr. Khaled Samy
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	Dr. A. Homole
Head of Department	Asso. Prof. Dr. Sherif Khafaga.	exa.
Date of Approval	4/10/2022	

Civil Engineering Department

Course Specification

Course Code: CVE 3202Course Title: Steel Structures Design (2)

1. Basic information								
Program Title	Civil Engineering Department							
Department offering the program	Civil Engineering Department							
Department offering the course	Civil Engineering Department							
Course Code	CVE 3202							
Year/level	third year / seco	ond Semester (2	2 nd Semester)					
Specialization	Major							
Tooching Hours	Lectures	Tutorial	Practical	Total				
Teaching Hours	2	2	0	4				

2. Co	urse Aims
No.	Aim
AM1	Provide a professional engineer capable of working efficiently and effectively in steel structures area design(AM1).
AM2	Teach the students to practice the methodology in thinking and describing steel structures design problems(AM2).

3. Cour	3. CourseLearning Outcomes (LOs)							
CLO1	Identify steel types and its properties.							
CLO2	Solve complex steel design problems by applying structure analyzing							
	fundamentalsand mathematics.							
CLO6	Apply engineering design processes to produce cost-effective solutions for steel							
	structures.							

4. Course Contents				
Topics	Week			
Calculation of steel sections properties	1			
load calculation on steel beams	2			
design of steel beams (hot rolled &built-up sections)	3			
Examples for design of steel beams (hot rolled).	4			
design of steel beams (built-up sections)	5			
Examples for design of steel beams (built-up sections).	6			
Calculation of straining actions acting on steel columns. design of crane track girders.	7			
midterm	8			
design of steel columns subjected to normal forces and uniaxial moment	9			
design of steel columns subjected to normal forces and biaxial moments.	10			
calculation of loads acting on cranes track girders	11			
design of crane track girders.	12			
Examples for design of crane track girders.	13			
Revision	14			
Final exam	15			

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO1	 $\sqrt{}$		$\sqrt{}$			V			
CLO2		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	1			$\sqrt{}$
CLO6	 $\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V			

6. Teaching and Learning methods of Disabled Students							
No.	No. Teaching Method Reason						
1	Additional Tutorials						
2	Online lectures and assignments						

7. Students' Assessment

7.1 Stud	7.1 Students' Assessment Method						
No.	Assessment Method	CLOs					
1	Attendance						
2	Sheets	CLO1, CLO2,					
3	Quizzes	CLO1					
4	Mid-term Exam	CLO1, CLO2					
5	Final Exam	CLO1, CLO2					

7.2Asse	7.2Assessment Schedule						
No.	Assessment Method	Weeks					
1	Attendance	Weekly					
2	Sheets	Bi-weekly					
3	Quizzes						
4	Mid-term Exam	8					
5	Final Exam	15					

7.3 Weighting of Assessments										
	Assessment Method	Weights%	Weights	Weights%	Weights					
Teacher Opinion	sheets	40%	40	5%	5					
	Attendance			5%	5					
	Quizzes			10%	10					
	Mid-term exam			20%	20					

Civil Engineering Department

Practical / Oral	Practical Attendance			
	Lab. Reports			
	Projects			
	practical exam			
Final Exam		60%	60	
Total		100%	100	

8. List of References

- [1] Steel Structures design and Behavior G. Salman& E. Johnson, Fifth Edition 2009.
- [2] Structural Steel Design, Jack C. McCormack, fourth Edition, 2008.
- [3] Egyptian Code of Practice ASD, LRFD, 2010.
- [4] (AISC 360-16) ,2019

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

10. Matrix of Course Content with Course LO's

No.	Topics	Aim	CLOs
1	Calculation of steel sections properties	1,	CLO1,
2	load calculation on steel beams	1	CLO1, CLO2
3	design of steel beams (hot rolled &built-up sections)	1,3	CLO1, CLO6
4	Examples for design of steel beams (hot rolled).	1,3	CLO1, CLO2, CLO6
5	design of steel beams (built-up sections)	1	CLO1, CLO2,
6	Examples for design of steel beams (built-up sections).	1,3	CLO1, CLO2, CLO6
7	Calculation of straining actions acting on steel columns. design of crane track girders.	1,3	CLO1, CLO2, CLO6
8	design of steel columns subjected to normal forces and uniaxial moment	1,3	CLO1, CLO2 CLO6
9	design of steel columns subjected to normal forces and biaxial moments.	1	CLO1, CLO2,

Civil Engineering Department

10	calculation of loads acting on cranes track girders	1,3	CLO1, CLO6
11	design of crane track girders.	1	CLO1, CLO2,
12	Examples for design of crane track girders.	1,3	CLO1, CLO2, CLO6

11. Matrix of Program LOs with Course Los

	Program LOs		Course LOs
	Identify, formulate, and solve complex engineering	CLO1	Identify steel types and its properties.
PLO1	problems by applying engineering fundamentals, basic science, and mathematics.	CLO2	Solve complex steel design problems by applying structure analyzing fundamentalsand mathematics.
PLO3	Apply engineering design processes to produce costeffective solutions. Meet specified needs with consideration for global, cultural, social, economic, environmental, and ethical aspects. Achieve the principles of design within the principles and contexts of sustainable design and development.	CLO6	Apply engineering design processes to produce cost-effective solutions for steel structures.

Title	Name	Signature
-------	------	-----------

Course coordinator	Dr. Medhat Momtaz	Q 2/3
Program Coordinator:	Dr. Ahmed Hamdy	Dr. A. Hamol
Head of Department	Asoc.Prof. Dr. Sherif khafaga.	lapar,
Date of Approval	4/10/2022	

Civil Engineering Department

Course Specification

Course Code: CVE3203 Course Title: Water Structure Design (1)

1. Basic information								
Program Title	Civil Engineeri	ng Department	t					
Department offering the program	Civil Engineeri	ng Department	t					
Department offering the course	Civil Engineering Department							
Course Code	CVE3203							
Year/level	Third year / Fo	urth level	(2 nd Seme	ster)				
Specialization	Major							
Tanching House	Lectures	Tutorial	Practical	Total				
Teaching Hours	4	2	0	6				

2. Co	2. Course Aims								
No.	Aim								
AM1	Provide a professional engineer capable of working efficiently and effectively in water structures design (AM1).								
AM2	Teach the students to practice the methodology in thinking and describing water structures design problems (AM2).								
AM3	Give the students the knowledge and technical skills to design and implement water structures projects by utilizing modern technologies through proper planning and participatory work (AM3).								

3. Cour	3. Course Learning Outcomes (LOs)								
CLO1	Identify the best layout of irrigation and drainage network and water structures								
	classification.								
CLO15	Participates in teamwork efficiently.								
CLO24	Design the optimum sections for water structures.								
CLO25	Manage time for construction processes of irrigation and drainage projects.								

4. Course Contents								
Topics	Week. No							
Alignment of canals and drains nets	1							
Synoptic diagram	2							
Area served of canals and Drains	3							
Discharge of canals	4							
Design of canals and drains cross sections	5							
Draw of cross and longitudinal sections	6							
Water structure classification	7							
Design of regulator	8							
Mid-term exam	9							
Design of tail escape	10							
Design of dam	11							
Design of R.C. Bridges	12							
Design of weir [1]	13							
Design of weir [2]	14							
Final exam	15							

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO1	 					
CLO15						
CLO24	 					
CLO25						

6. Teaching and Learning methods of Disabled Students		
No.	Teaching Method	Reason
1	Additional Tutorials	
2	Online lectures and assignments	

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method				
No.	Assessment Method	Los			
1	Attendance				
2	Sheets	CLO1, CLO24, CLO25			
3	Quizzes	CLO1, CLO24			
4	Mid-term Exam	CLO1, CLO24			
5	Oral Exam				
6	Final Exam	CLO1, CLO24			

7.2 Ass	7.2 Assessment Schedule			
No.	Assessment Method	Weeks		
1	Attendance	Weekly		
2	Sheets	Bi-weekly		
3	Quizzes			
4	Mid-term Exam	9		
5	Practical Exam			
6	Final Exam	15		

7.3 Weighting of Assessments					
	Assessment Method	Weights%	Weights	Weights%	Weights
Teacher Opinion	sheets	40%	40	10%	10

Civil Engineering Department

	Attendance			-	-
	Quizzes			10%	10
	Mid-term exam			20%	20
	Practical Attendance				
Practical	Lab. Reports				
	Lab. Activities / Projects				
	practical exam				
Final Exam		60%	60		
Total		100%	100		

8. List of References

- [1] William George Bligh, The Practical Design of Irrigation Works Classic Reprint, 2020, ISBN: 1332329349, Pages: 438.
- [2] Asawa, G.L, "Irrigation and Water Resources Engineering", New Age International, 2006, ISBN: 812241673X, 9788122416732, https://easyengineering.net/irrigat...
- [3] Sharma, R. K., and T. K. Sharma. A Textbook of Water Power Engineering. S. Chand Publishing, 2003.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

10.	10. Matrix of Course Content with Course LO's				
No.	Topics	Aim	LO's		
1	Alignment of canals and drains nets	AM1, AM2	CLO1, CLO15, CLO25		
2	Synoptic diagram	AM1, AM2	CLO1, CLO15, CLO25		
3	Area served of canals and Drains	AM1, AM2	CLO1, CLO15, CLO25		
4	Discharge of canals	AM1, AM2	CLO1, CLO15, CLO25		
5	Design of canals and drains cross sections	AM1, AM2	CLO1, CLO15, CLO25		
6	Draw of cross and longitudinal sections	AM1, AM2	CLO15, CLO25		
7	Water structure classification	AM1, AM2	CLO1		
8	Design of regulator	AM1, AM2	CLO24, CLO15, CLO25		
9	Design of tail escape	AM1, AM2, AM3	CLO24, CLO15, CLO25		
10	Design of dam	AM1, AM2, AM3	CLO24, CLO15, CLO25		
11	Design of R.C. Bridges	AM1, AM2, AM3	CLO24, CLO15, CLO25		
12	Design of weir	AM1, AM2	CLO24, CLO15, CLO25		

11. N	11. Matrix of Program LOs with Course Los				
	Program LOs		Course Los		
PLO1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	CLO1	Identify the best layout of irrigation and drainage network.		
PLO7	Function efficiency as an individual and as a member of	CLO15	Participates in teamwork efficiently.		

	multi-disciplinary and multicultural teams.		
PLO12	Achieve an optimum design of Reinforced Concrete and Steel Structures. Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	CLO24	Design the optimum sections for water structures.
PLO13	Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impact of projects.	CLO25	Manage time for construction processes of irrigation and drainage projects.

Title	Name	Signature	
Course coordinator	Asso. Prof. Walaa Elnashar	Walaa Elnashar	
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	Dr. A. Hamole	
Head of Department	Asso. Prof. Dr. Sherif Ahmed Mohamed	Papari,	
Date of Approval	4/10/2022		

Civil Engineering Department

Course Specification

Course Code: CVE 3204 Course Title: Sanitary Engineering (1)

1. Basic information				
Program Title	Civil Engineering Department			
Department offering the program	Civil Engineering Department			
Department offering the course	Civil Engineering Department			
Course Code	CVE 3204			
Year/level	Third year / second Semester (2 nd Semester)			
Specialization	Major			
Too shing Houng	Lectures	Tutorial	Practical	Total
Teaching Hours	4	2		6

2. Course Aims		
No.	Aim	
AM2	Teach the students scientific methods to think about and solve design problems of water	
	supply system units, included in the course, to meets to present and future	
	requirements. (AM1).	

3. Learning Outcomes (LOs)		
CLO4	Analyze data of population and water consumption to draw conclusions.	
CLO6	Apply engineering design process in collection, storage and Disinfection works to produce low cost solutions.	
CLO24	Achieve an optimum design of collection and storage water works and networks.	

4. Course Contents

Topics	Week NO.
Introduction	1
Population prediction	2
Water consumption	3
Introduction to water supply system	4
collection works (intake conduits)	5
collection works (sump and low lift pump)	6
Storage works (ground reservoir)	7
Storage works (elevated tank)	8
Disinfection	10
Introduction to distribution system	11
Investigation of Pipe networks	12
Water quality parameters	13
Water quality parameters	14
Final exam	15

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. Experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO4	V						
CLO6	V	$\sqrt{}$	√	√			
CLO24	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			

6. Teaching and Learning methods of Disabled Students

No.	Teaching Method	Reason
1	Additional Tutorials	
2	Online lectures and assignments	

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method						
No.	Assessment Method	Los					
1	Attendance						
2	Sheets	CLO4,6, 24					
3	Quizzes	CLO4,6, 24					
4	Mid-term Exam	CLO6, 24					
5	Practical Exam						
6	Final Exam	CLO4,6, 24					

7.2 Ass	7.2 Assessment Schedule						
No.	Assessment Method	Weeks					
1	Attendance	Weekly					
2	Sheets	Bi-weekly					
3	Quizzes	4 & 10					
4	Mid-term Exam	9					
5	Practical Exam	14					
6	Final Exam	15					

Civil Engineering Department

	Assessment Method	Weights%	Weights	Weights%	Weights
	sheets			10%	10
Too show Owinion	Attendance	400/	40		-
Teacher Opinion	Quizzes	40%	40	10%	10
	Mid-term exam			20%	20
	Practical Attendance				
December 1 / Occal	Lab. Reports				
Practical / Oral	Lab. Activities / Projects				
	practical exam				
Final Exam		60%	60		
Total		100%	100		

8. List of References

- [1] Khidirov, Sanatjon, et al. "Exploration of the hydraulic structure of the water supply facilities operation mode and flow." E3S Web of Conferences. Vol. 264. EDP Sciences, 2021.
- [2] Wang, Jiao, et al. "Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China." Environmental pollution 262 (2020): 114665.
- [3] Rajmohan, Kunju Vaikarar Soundararajan, et al. "Plastic pollutants: effective waste management for pollution control and abatement." Current Opinion in Environmental Science & Health 12 (2019): 72-84.
- [4] Water Supply Engineering, Dr.B.C punmia, B-i/10.
- [5] Water Supply & Waste water Engineering, A.K. Upadhya, B-i/12.

Civil Engineering Department

- [6] Water supply and pollution control 8ed, Chadik, B-i/19.
- [7] Water supply Engineering, P.N.Modi, B-i/22.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

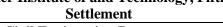
Moodle and Microsoft teams

Data show

Laboratory Usage

10. Matrix of Course Content with Course LO's

No.	Topics	Aim	Los
1	Introduction	AM2	
2	Population prediction	AM2	CLO4
3	Water consumption	AM2	CLO4
4	Introduction to water supply system	AM2	
5	Design of collection works (intake conduits)	AM2	CLO6, 24
6	Design of collection works (sump and low lift pump)	AM2	CLO6, 24
7	Storage works (design of ground reservoir)	AM2	CLO6, 24
8	Storage works (design of elevated tank)	AM2	CLO4,6, 24
9	Mid-term exam	AM2	CLO6, 24
10	Introduction to distribution system	AM2	
11	distribution system	AM2	CLO24
12	Investigation of Pipe networks	AM2	CLO24
13	Water quality parameters	AM2	CLO24
14	Water quality parameters	AM2	CLO24
15	Final exam	AM2	CLO4,6, 24



11. N	latrix of Program LOs wit	h Cours	e Los
	Program Los		Course Los
PLO2	Analyze and interpret data to evaluate findings.	CLO4	Analyze data of population and water consumption to draw conclusions.
PLO3	Apply engineering design processes that meets specified needs.	CLO6	Apply engineering design process in collection, storage and Disinfection works to produce low cost solutions.
PLO12	Achieve an optimum design in Sanaitary works strategies.	CLO24	Achieve an optimum design of collection and storage water works and networks.

Title	Name	Signature
Course coordinator	Dr. Salma Abdel Mageed.	7\$
Program Coordinator:	Asso. Dr. Ahmed Hamdy.	Dr. A. Harnok
Head of Department	Prof. Dr. Shrif Khafaga.	Supari)
Date of Approval	4/10/2022	

Ministry of Higher Education Higher Institute of and Technology, Fifth

Civil Engineering Department

Course Specification

Course Code: CVE 3205 Course Title: Transportation Planning and Traffic

Engineering

1. Basic information					
Program Title	Civil Engineeri	ng Department			
Department offering the program	Civil Engineering Department				
Department offering the course	Civil Engineering Department				
Course Code	CVE 3205				
Year/level	Third year / 4 th level (2 nd Semester)				
Specialization	Major				
Too shing Houng	Lectures	Tutorial	Practical	Total	
Teaching Hours	4	2		6	

2. Co	urse Aims
No.	Aim
AM1	Provide an engineer professional that is proficient in traffic engineering.
AM3	Give the students the knowledge about the fundamentals of the traffic engineering to plan transportation and traffic engineering projects using contemporary techniques.

3. Cour	3. Course Learning Outcomes (CLOs)						
CLO6	Apply engineering design processes for traffic design to produce cost-effective solutions.						
CLO7	Meet specified needs for traffic design with consideration for social, economic, and environmental aspects.						
CLO22	Use numerical techniques by applying a full range of civil engineering concepts and techniques of traffic engineering.						
CLO24	Achieve an optimum design of traffic engineering.						

4. Course Content	Course Contents							
Week No.	Topics							
1	Introduction: Importance of Transportation, Road Classification.							
2	Driver, Vehicle, and Road Characteristics: The Human Response Process, Braking Distance, Sight Distance.							
3	Traffic Engineering Studies: Speed studies.							
4	Traffic Engineering Studies: Continue of speed studies.							
5	Traffic Engineering Studies: Volume studies							
6	Traffic Engineering Studies: Continue of volume studies.							
7	Traffic flow characteristics.							
8	Highway capacity.							
9	MidTerm Exam							
10	Traffic control (P1): intersection control.							
11	Traffic control (P2): traffic signs and road marking.							
12	Parking.							
13	Trip Generation techniques and methods.							
14	Trip distribution methods.							
15	Final Exam.							

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO6		$\sqrt{}$	V	$\sqrt{}$	-	$\sqrt{}$	-	-	-			-
CLO7	V		-		-	-	-	-	-	\checkmark	\checkmark	
CLO22	1	-	V	V	-	$\sqrt{}$	V	-	-			-
CLO24	-	•	-	V	•	V	√	V	-			-

6. Teaching and Learning methods of Disabled Students						
No.	Teaching Method Reason					
1	Additional Tutorials					
2	Online lectures and assignments					

7. Students' Assessment

7.1 Students' Assessment Method					
No.	Assessment Method	CLOs			
1	Attendance				
2	Reports	CLO6, CLO7, CLO22, CLO24			
3	Sheets	CLO6, CLO7, CLO22, CLO24			
4	Quiz 1 / Quiz 2				
5	Mid-term Exam	CLO6, CLO7, CLO22, CLO24			
6	Oral/ Practical Exam				
7	Final Exam	CLO6, CLO7, CLO22, CLO24			

7.2 Assessment Schedule					
No.	Assessment Method	Weeks			
1	Attendance	Weekly			
2	Reports / Sheets	Bi-weekly			
3	Quiz 1 / Quiz 2	-			
4	Mid-term Exam	9			
5	Oral/ Practical Exam	-			
6	Final Exam	15			

Ministry of Higher Education

Higher Institute of and Technology, Fifth Settlement

Civil Engineering Department

7.3 Weighting of Assessments							
	Assessment Method	Weights%	Weights	Weights%	Weights		
	Reports			5%	5		
	Sheets			15%	15		
Teacher Opinion	Attendance	40%	40	-	-		
	Quiz 1 / Quiz 2			-	-		
	Mid-term exam			20%	20		
	Practical Attendance			-	-		
Practical / Oral	Lab. Reports			-	-		
Tractical/Oral	Lab. Activities / Projects			-	-		
	Final oral / practical exam			-	-		
Final Exam	Written exam	60%	60	60%	60		
Total		100%	100	100	100		

8. List of References

- [1] Egyptian code of practice for airport and highway construction and Bridges, Cairo, 2020.
- [2] Mannering, F.L. and Kilareski, W.P., "Principles of Highway Engineering and Traffic Analysis", John Wiley & Sons, 7th edition, New York, 2020.
- [3] Garber N. J. and Hoel, L. A., Traffic and Highway Engineering, 4th Edition, 2009.
- [4] Mahmoud Tawifik Salem. (1985) "Transportation and Traffic Engineering".

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

10.	10. Matrix of Course Content with Course LO's							
Week No.	Topics	Aim	LOs					
1	Introduction: Importance of Transportation, Road Classification.	1	CLO24					
2	Driver, Vehicle, and Road Characteristics: The Human Response Process, Braking Distance, Sight Distance.	1	CLO7, CLO22, CLO24					
3	Traffic Engineering Studies: Speed studies.	1,3	CLO22, CLO24					
4	Traffic Engineering Studies: Continue of speed studies.	1,3	CLO22, CLO24					
5	Traffic Engineering Studies: Volume studies	1,3	CLO22, CLO24					
6	Traffic Engineering Studies: Continue of volume studies.	1,3	CLO22, CLO24					
7	Traffic flow characteristics.	1	CLO22, CLO24					
8	Highway capacity.	1	CLO6, CLO7, CLO24					
10	Traffic control (P1): intersection control.	1,3	CLO6, CLO7, CLO24					
11	Traffic control (P2): traffic signs and road marking.	1,3	CLO6, CLO7, CLO24					
12	Parking.	1,3	CLO6, CLO7, CLO24					
13	Trip Generation techniques and methods.	1,3	CLO22, CLO24					
14	Trip distribution methods.	1,3	CLO22, CLO24					

11.	11. Matrix of Program LOs with Course Los						
	Program LOs	Course LOs					
	Apply engineering design processes to produce cost-effective solutions that meet	CLO6	Apply engineering design processes for traffic design to produce cost-effective solutions.				
PLO3	specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	CLO7	Meet specified needs for traffic design with consideration for social, economic, and environmental aspects.				
PLO11	Select appropriate and sustainable technologies for	CLO22	Use numerical techniques by applying a full range of civil engineering concepts				

Ministry of Higher Education

Higher Institute of and Technology, Fifth Settlement

	construction of buildings.		and techniques of traffic engineering.
	Infrastructures and water		
	structures; using either		
	numerical techniques or		
	physical measurements and /		
	or testing by applying a full		
	range of civil engineering		
	concepts and techniques of:		
	Structural Analysis and		
	Mechanics, Properties and		
	Strength of Materials,		
	Surveying, Soil Mechanics,		
	Hydrology and Fluid		
	Mechanics.		
	Achieve an optimum design		
	of Reinforced Concrete and		
	Steel Structures. Foundations		
	and Earth Retaining		
	Structures; and at least three		
	of the following civil		
PLO12	engineering topics:	CLO24	Achieve an optimum design of traffic
ILOIZ	Transportation and Traffic,	CLO24	engineering.
	Roadways and Airports,		
	Railways, Sanitary Works,		
	Irrigation, Water Resources		
	and Harbors; or any other		
	emerging field relevant to the		
	discipline.		

Title	Name	Signature
Course coordinator	Dr. Mohamed Zakria	#
Program Coordinator:	Asso. Prof. Dr. Ahmed Hamdy	- Dr. A. Henrole-
Head of Department	Prof. Dr. Sherif Khafaga	Depart.
Date of Approval	4/10/2022	

Civil Engineering Department

Course Specification

Course Code: HUM 3206 Course Title: Feasibility Study and Project Management

1. Basic information					
Program Title	Civil Engineering Department				
Department offering the program	Civil Engineering Department				
Department offering the course	Civil Engineering Department				
Course Code	HUM 3206				
Year/level	Fifth Level / see	cond Semester	(2 nd S	emester)	
Specialization	Major				
Tooking House	Lectures	Tutorial	Practical	Total	
Teaching Hours	2	2		4	

2. Co	2. Course Aims							
No.	Aim							
AM2	Teach the students how to think about and how to manage problems using scientific methods that ensure implementing a construction project with the optimal quality within the planned schedule and planned budget as a starting point for achieving sustainable development (AM2).							
AM3	Give the students the knowledge and the expertise to plan and carry out civil engineering projects using contemporary techniques (AM3).							

3. Learning Outcomes (LOs)								
CLO10	Utilize the quality guidelines, health and safety requirements, and							
CLOIU	environmental issues.							
CLO11	Utilize risk management principles.							
CLO13	Plan engineering projects.							
CLO14	Supervise and monitor implementation of engineering projects.							

4. Course Contents				
Topics	Week			
Construction Management Phases	1			
Feasibility Studies	2			
Construction Contracts	3			
Target Cost Contracts	4			
Bedding and Tendering	5			
Planning Techniques	6			
Critical Path Method – Activity on Node	7			
Critical Path Method – Activity on Arrow	8			
Gannt Chart	10			
Resource allocation	11			
Resource Leveling& Cost Estimate	12			
Cash flow diagram for contractor	13			
Cash flow diagram for contractor	14			
Final exam	15			

5. Teaching and Learning methods												
	Teaching and Learning Methods											
Course learning Outcomes (LOs)	Lectures (face to face / online)	Presentation / Movies	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Research / Reports	Self-learning	Modeling and Simulation

Civil Engineering Department

CLO10								
CLO11	1	V	$\sqrt{}$	$\sqrt{}$				
CLO13		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$			
CLO14	1	V	V					

6. Teaching and Learning methods of Disabled Students							
No.	Teaching Method Reason						
1	Additional Tutorials						
2	Online lectures and						
	assignments						

7. Students' Assessment

7.1 Stu	7.1 Students' Assessment Method						
No.	Assessment Method	Los					
1	Attendance						
2	Reports / Sheets	CLO10, 11, 13,14					
3	Quiz 1 / Quiz 2	CLO 11, CLO 13					
4	Mid-term Exam	CLO10, 11					
5	Oral/ Practical Exam						
6	Final Exam	CLO 10, 11, 13, 14					

7.2 Assessment Schedule					
No.	Assessment Method	Weeks			
1	Attendance	Weekly			
2	Reports / Sheets	Bi-weekly			
3	Quiz 1 / Quiz 2	4 & 10			
4	Mid-term Exam	9			
5	Oral/ Practical Exam	14			
6	Final Exam	15			

Civil Engineering Department

7.3 Weighting of Assessments							
	Assessment Method	Weights%	Weights	Weights%	Weights		
	sheets			10%	10		
Teacher Opinion	Attendance	40%	40		-		
reaction Opinion	Quizzes	4070	40	10%	10		
	Mid-term exam			20%	20		
	Practical Attendance						
Practical / Oral	Lab. Reports						
Tractical / Oral	Lab. Activities / Projects	b. Activities / Projects					
	practical exam	-					
Final Exam		60%	60				
Total		100%	100				

8. List of References

Civil Engineering Department

- [1] Goel, Ashish, L. S. Ganesh, and Arshinder Kaur. "Social sustainability considerations in construction project feasibility study: a stakeholder salience perspective." Engineering, construction and architectural management 27.7 (2020): 1429-1459.
- [2] Chen, Boris Po-Tsang, and Chang-Shian Chen. "Feasibility assessment of a water supply reliability index for water resources project planning and evaluation." Water 11.10 (2019): 1977.
- [3] Krishnamurthy & Ravindra, (2017), Construction and Project Management, Second edition (PB 2017).
- [4] Gould, Frederick E., and Nancy Nancy Eleanor Joyce, (2003), Construction Project Management, publisher: Pearson Prentice Hall, Third edition. https://lccn.loc.gov/2008007792/
- [5] NUNNALLY and Stephens, (2007). Construction Methods and Management, publisher: Prentice Hall, eighth edition. https://lccn.loc.gov/00039179/
- [6] Keith Potts and Ankrah Nii (2014). Construction cost management: learning from case studies. Routledge, 2014.

9. Facilities required for teaching and learning

Lecture/Classroom

White board

Lecture room equipped with e-learning tools (computer, internet, mike, headphones, etc.)

Moodle and Microsoft teams

Data show

Laboratory Usage

10.	10. Matrix of Course Content with Course LO's							
No.	Topics	Aim	Los					
1	Construction Management Phases	AM3	CLO 10, A6.2					
2	Feasibility Studies	AM2, AM3	CLO 11, CLO 61					
3	Construction Contracts	AM3	CLO10, CLO41					

4	Target Cost Contracts	AM2, AM3	CLO10
5	Bedding and Tendering	AM3	CLO 10
6	Planning Techniques	AM2, AM3	CLO 11
7	Critical Path Method – Activity on Node	AM2, AM3	CLO 11
8	Critical Path Method – Activity on Arrow	AM2, AM3	CLO 11
9	Mid-term exam	AM2, AM3	CLO 11
10	Resource allocation	AM2, AM3	CLO 11
11	Resource Leveling	AM2, AM3	CLO 11, CLO 13, CLO 14
12	Cost Estimate	AM2, AM3	CLO 11, CLO 13, CLO 14
13	Cash flow diagram for contractor	AM2, AM3	CLO 10, CLO 411
14	Cash flow diagram for contractor	AM2, AM3	CLO 10, CLO 411
15	Final exam	AM2, AM3	CLO 10, CLO 11, CLO 13, CLO 14

11. Matrix of Program LOs with Course Los					
Program Los		Course Los			
PLO4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	CLO10	Utilize the quality guidelines, health and safety requirements, and environmental issues.		
		CLO11	Utilize risk management principles.		
PLO6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	CLO13	Plan engineering projects.		
		CLO14	Supervise and monitor implementation of engineering projects.		

Title	Name	Signature
Course coordinator	Dr. Medhat Moomtaz.	Q-26/s
Program Coordinator:	Dr. Ahmed Hamdy.	Dr. A. Hannole
Head of Department	Asso. Prof. Dr. Shrif Khafaga.	lagar.
Date of Approval	4/10/2022	